A Model for the Topology of Excitatory Amino Acid Transporters Determined by the Extracellular Accessibility of Substituted Cysteines
نویسندگان
چکیده
Excitatory amino acid transporters (EAATs) function as both substrate transporters and ligand-gated anion channels. Characterization of the transporter's general topology is the first requisite step in defining the structural bases for these distinct activities. While the first six hydrophobic domains can be readily modeled as conventional transmembrane segments, the organization of the C-terminal hydrophobic domains, which have been implicated in both substrate and ion interactions, has been controversial. Here, we report the results of a comprehensive evaluation of the C-terminal topology of EAAT1 determined by the chemical modification of introduced cysteine residues. Our data support a model in which two membrane-spanning domains flank a central region that is highly accessible to the extracellular milieu and contains at least one reentrant loop domain.
منابع مشابه
The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate.
The excitatory neurotransmitter glutamate is removed from the synaptic cleft by several related sodium- and potassium-coupled transporters. They thereby restrict the neurotoxicity of this transmitter. Based on the accessibility of single cysteines to the large sulfhydryl reagent 3-N-maleimidyl(propionyl)biocytin, we have proposed a topological model for the astroglial glutamate transporter GLT-...
متن کاملEstrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke
Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...
متن کاملAnalysis of the membrane topology for transmembrane domains 7-12 of the human reduced folate carrier by scanning cysteine accessibility methods.
The hRFC (human reduced folate carrier) is the major membrane transporter for both reduced folates and antifolates in human tissues and tumours. The primary amino acid sequence of hRFC predicts a membrane topology involving 12 TMDs (transmembrane domains) with cytosolic oriented N- and C-termini, and a large internal loop connecting TMDs 6 and 7. Previous studies using haemagglutinin epitope in...
متن کاملSubstrate transport and anion permeation proceed through distinct pathways in glutamate transporters
Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiolog...
متن کاملMembrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility.
Heteromeric amino acid transporters are composed of a heavy and a light subunit linked by a disulfide bridge. 4F2hc/xCT elicits sodium-independent exchange of anionic L-cysteine and L-glutamate (system x(c)(-)). Based on the accessibility of single cysteines to 3-(N-maleimidylpropionyl)biocytin, we propose a topological model for xCT of 12 transmembrane domains with the N and C termini located ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 25 شماره
صفحات -
تاریخ انتشار 2000